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ABSTRACT: This study implements an operational building energy performance model based on the integrative human-
physical household system theory. The behavior of human subsystem is derived from bootstrap sampling of American 
Time Use Survey (ATUS) data. The specification of physical subsystem takes reference from residential building 
industry’s best practice and previous study on domestic space network structure. Through the sharing of interior spaces 
and appliances, the human’s domestic activities and the residence’s energy consumption behavior are integrated as one 
indecomposable human-physical household energy consumption system. Energy Plus program is chosen as the platform 
to run this model’s building energy simulation for its flexibility and credibility. Virtual experiment is used to extrapolate 
the stochastic yet patterned behavior of the integrative model with different household compositions. Bell-shaped 
distributions are present in annual appliance, heating and cooling load demands. The simulated hourly appliance and 
lighting load profiles show good agreement with those generated from filed utility metering data.     
Keywords: integrative household energy model, American Time Use Survey, bootstrap sampling, virtual experiment 

 
 

INTRODUCTION 
Although human behavior has long been identified as the 
key determinant of building energy consumption, until 
recent years, attempts to specify occupants as a 
parameter in building energy simulation is rare and 
usually do not associate with any theoretical guidance. 

 
Till this day, a standard approach to represent the 

effect of occupants in building energy simulation is to 
refer to a set of load profiles. These load profiles are 
derived from large scale metering data from utility 
companies and referred by building energy conservation 
codes and standards. For their application as inputs of 
building energy simulation, an obvious drawback is that 
the fixed, empirically derived load profiles carry no 
causal relationship to the demography of occupants thus 
cannot respond to energy conservation measures that will 
interact with occupants’ energy consumption behavior. 

 
 From the perspective of domestic energy use, the 

integrative household system theory [6] looks at a 
household as a combination of two sub-systems – the 
physical system and the human system. The physical 
system is the materials and devices of a dwelling, and the 
human system is the occupants that live within the 
dwelling. Surrounding them is the third element, the 
environment that influences the operation of the two 
household sub-systems. The purpose of the physical 
subsystem is to provide support and comfortable 
surroundings for human activities. The energy use in 

household is the result of the physical system providing 
these services. Thus, the level of energy consumption 
depends on the level of service required by the occupant 
and the efficiency of service determined by the physical 
characteristics of the dwelling. And the energy 
performance of household system will be affected by 
both technical and social changes. 

 
This study implements an operational building energy 

performance model based on the integrative human-
physical household system theory. The behavior of 
human subsystem is derived from bootstrap sampling of 
American Time Use Survey (ATUS) data. The 
specification of physical subsystem takes reference from 
residential building industry’s best practice and previous 
study on domestic space network structure. Through the 
sharing of interior spaces and appliances, the human’s 
domestic activities and the residence’s energy 
consumption behavior are integrated as one 
indecomposable human-physical household energy 
consumption system. Energy Plus program is chosen as 
the platform to run this model’s building energy 
simulation for its flexibility and credibility.  

 
Virtual experiment is used to extrapolate the 

stochastic yet patterned behavior of the integrative model 
of a 4-bedroom house in Chicago with four different 
household compositions. Bell-shaped distributions are 
present in all annual heating, cooling and appliance load 
demands. The simulated hourly appliance and lighting 
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load profiles show good agreement with those generated 
from filed utility metering data. 
 
MODELLING METHODOLOGY 
The proposed integrative human-physical household 
energy system model is implemented by repeating 
following steps (Figure 1): 1. Sample each family 
member’s daily activities from ATUS data pool by 
bootstraps approach, 2.   Determine the thermal zone of 
each activity individual member takes to create 
individual member’s thermal zone-activity schedules, 3. 
Merge individual schedules together to form whole 
family thermal zone-activity schedule, 4. Assign 
appliance and its energy rating to whole family schedule 
to generate load profiles by thermal zone, 5. Merge these 
load profiles into the physical configuration of the house 
to create for building energy simulation.  

 
The repetition of Steps 1 through 5 is designed to 

capture the stochastic nature of human behaviours. Thus, 
the energy simulation output implemented by this 
approach contains not only one fixed set of values but 
rather multiple sets of load and energy consumption 
values to represent the variation of energy consumption 
from a given household composition input. This variation 
can also be described by statistical inferences such as 
mean, standard error of means and percentiles.  
 

 
Figure 1: Model Structure 

American Time Use Survey is the foundation of the 
proposed integrative household energy model. It is 
widely recognized by the time use social scientists as the 
most comprehensive data that documents the time use of 
all walks of lives in the U.S. The data is administrated by 
U.S. Bureau of Labor Statistics and U.S. Census Bureau. 
The survey [2], consisting of approximately 13,000 

individual 24-hour time diaries, is conducted once every 
year since 2003. 2006 ATUS data is used by this study. 

 
ATUS employs a 3-tiered activity coding system that 

categorizes daily activity into 403 activity codes. 
Additional coding systems were also employed to 
indicate the “where” and “with whom” information of 
the activities. The fine resolution of ATUS time diary 
(Table 1), not seen in the time use survey data of other 
nations, contributes to the feasibility of thermal zone and 
appliance mapping in the proposed modeling method.  
 
Table 1: An ATUS Time Diary Sample 

 
 

In human-physical household system theory [6], three 
categories of human energy consumption behavior from 
social perspective have been identified. They are 
1.cultural and social determinants, 2.demographic and 
economic determinants and 3.psychological 
determinants. Cultural and social determinants is related 
to occupant’s daily activity pattern; demographic and 
economic determinants influence the tools and 
equipments chosen by the occupant to assist her daily 
activities; psychological determinants affect to the way 
these tools and equipments are used by the occupant. 
Three categories of human energy consumption behavior 
form a tiered relation (Figure 2).  Since ATUS data 
documents only the daily activities (time use), the 
proposed method extracts the cultural-social determined 
human energy consumption behavior from ATUS and 
treats the demographic and economic determined and 
psychological determined human energy consumption as 
control variables (appliance energy rating and building 
operation configuration) in building energy simulation. 
 

 
Figure 2: Links between Behaviour Determinants and Domestic 
Energy Consumption  

Another limitation of the ATUS is the lack of whole 
family time diary in its database. Based on literature 
review [9] and ATUS samples study results, the family 
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demography of each individual is identified as the 
suitable criteria to compose representative whole family 
schedules for energy simulation. For example, an ATUS 
record of a part-time working married male shows that 
this male has a full-time working wife and two kids. 
Then in composing the representative ATUS family, an 
ATUS record of a full-time working married female with 
a part-time working husband and two kids will be chosen 
to match this ATUS male (Figure 3).  
 

 
Figure 3: Family Schedule derived from ATUS Data 

In statistics, there are mainly two approaches to 
generate large sets of data from samples of a population 
– Markov Chain Monte Carlo (MCMC) simulation and 
Bootstrap sampling [3]. MCMC approach derives the 
time-dependent statistical distributions of the samples 
then apples Monte Carlo process on the statistical 
distributions to generate large sets of simulated data. 
Bootstrap method generates large sets of data from 
repetitive random draws of the samples. The sets of 
bootstrap generated data will demonstrate properties that 
tell about the nature of the population. In many cases, 
bootstrap is a more labor intensive processes. The 
operation of bootstrap, however, does not rely on any 
preexisting interpretation of the population’s property; 
rather, it generates data sets that can be used to examine 
the properties of the population.  
 

Past efforts on integrating Time Use Survey (TUS) to 
residential building energy simulation have focused on 
Markov Chain Monte Carlo (MCMC) technique to 
generate various types of schedules for simulation [8, 
10]. While the simulated occupant schedule in average 
agrees to the occupant schedule created directly from 
entire Time Use Survey data, it suffers from two 
shortcomings. First is that in order to make MCMC 
model manageable, the feasibility of deriving sub-house 
spatial distribution of occupants from TUS data cannot 
be explored. Second is the lack of examination of the 
robustness of MCMC model. For example, previous 
studies never state if different sub-sets of TUS data are 
sampled through random processes, will they generate 

MCMC models with similar transitional probability 
matrix along the time line? 

 
 Aiming to address these shortcomings, this study 

chooses to apply bootstraps approach to derive occupant 
behavior driven load profiles. And the robustness of the 
method can be easily examined by comparing if different 
batch of bootstrap samples generate in similar energy 
simulation results.  
 
BEHAVIOUR OF THE INTEGRATIVE MODEL  
A generic single family house is specified as the base 
case for integrative household energy model simulation 
(Figure 4). The north-south facing 2-story 4-bedroom 
generic house, sitting in Chicago suburb, is specified as 
30 feet in depth and 40 feet in width with 8 feet ceiling 
height and 15% of exterior wall covered by windows. 
The house is composed of 9 functional quarters. Depend 
on the parameter setting of the virtual experiment, the 
thermal zones of the house is either single or nine zones 
following the functional partitions; the building envelope 
thermal insulation of the house is either compliant to 
IECC 2006 standard [5] or comparable to good house 
constructed in 1990s (Table 2). The hourly air exchange 
rate (ACH) by infiltration is assumed to be 0.75.  
 

 
Figure 4: Layout of the Generic 4-bedroom House 

Table 2: Thermal Insulation Standard of the Generic House  
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Virtual experiment is a common approach used in 
complex system simulation to explore the system’s 
stochastic behaviours. In this study, the design of the 
virtual experiment (Table 3) serves for three objectives. 
1. To exam the role of household composition in the 
annual on-site load distribution patterns, 2. To contrast 
the effectiveness of exterior thermal insulation 
improvement and thermal zone refinement to annual on-
site heating and cooling load. 3. To exam the robustness 
of the integrative model’s behaviour through repetitions 
of sampling (bootstraps approach). Note that in term of 
household composition, this study contains only family 
made of husband, wife and dependent children.    
 
Table 3: Virtual Experiment Settings  

 
 

Grand-sum graph is created from summing-up the 
simulation results of all sampling repetitions. In this 
study, each grand-sum graph contains 300 data points. 
They serve for objectives 1 and 2 of the virtual 
experiment.  
 

First set of the grand-sum graphs are the annual 
occupant heat gain probability plot (Figure 5) and the 
annual appliance load probability plot (Figure 6). Heat 
gain of occupants is derived from the occupant’s ATUS 
extracted daily activities with reference to ASHRAE 
metabolic heat gain reference table [1]. Appliance load is 
derived by common sense assumption of the appliance 
needed for occupant’s ATUS extracted daily activities. 
Since both loads come directly from ATUS data, they are 
independent of the physical configuration of the house. 
     

 
Figure 5: Annual Occupant Heat Gain Probability Plot 

 
Figure 6: Annual Appliance Load Probability Plot 
 

Second set of the grand-sum graphs are the annual 
on-site heating / cooling load demand probability plots. 
The heating and cooling loads are the energy the building 
environmental system needs to deliver in response to the 
combined effect of natural environment, building 
physical configuration and occupants’ needs. They need 
to be derived through building energy simulation. Since 
Chicago is in heating dominate climate, two probability 
plots (Figures 7, 8) are used to represent two distinctive 
heating / cooling load distribution patterns discovered 
through virtual experiment.  
 

 
Figure 7: Annual On-Site Heating Load Probability Plot I 
 

 
Figure 8: Annual On-Site Heating Load Probability Plot II 
 

First heating load probability plot (Figure 7) depicts 
the case of infiltration dominate condition. In single 
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thermal zone house, majority of the heating load is to 
compensate the cold outside air infiltrates into the house. 
Simulation results indicates, in infiltration dominate 
condition, annual heating load is of Normal distribution. 
The slopes of the distribution vary slightly by household 
composition. The higher the number of occupants in a 
household, the tighter the bell-shape is.  

 
Second heating load probability plot (Figure 8) 

represent the case of occupant activity dominate 
condition. In 9 thermal zone house where HVAC system 
is activated only in occupied spaces, majority of the 
heating load is for occupant’s comfort. As the system 
responds primary to occupants’ need, its annual heating 
load corresponds to the loads generated by the occupants. 
It is by no surprise that the annual heating load of a 9 
zone house shares lognormal distribution with annual 
occupant heat gain and annual appliance load.  Since the 
distributions of annual occupant heat gain and annual 
appliance load of different household compositions have 
similar slope, the slope of annual heating load is also 
indifferent to household composition.    
 

 
Figure 9: Load Reduction through Insulation Improvement 
 

 
Figure 10: Load Reduction through Thermal Zone Refinement 
 

Third and the final set of the grand-sum graphs are 
the heating load demand reduction probability plots.  

 
First load reduction probability plot (Figure 9) 

illustrates the effect of building envelope insulation 

improvement of single zone house. Building envelope 
insulation has long been the focus of building energy 
conservation standards and codes for building energy 
efficiency improvement. This graph shows that 
improvement of the thermal insulation of a single zone,  
infiltration dominate house, which is common in reality, 
to IECC 2006 standard can result in averaged 10% to 
11% of heating load reduction. In another word, heating 
load reduction is indifferent to household composition. 
This finding is supported by field metering studies [4]. 

 
Second load reduction probability plot (Figure 10) 

shows the effect of thermal zone refinement for heating 
load reduction. By reconfiguring the heating system from 
single zone to 9 zones, simulation results indicate the 
reduction of heating load can be multitude of that 
through thermal insulation improvement.  The effect of 
thermal zone refinement is highly sensitive to household 
composition. Best case comes at 2 occupant household 
(57.5% heating load reduction in average). Yet even in a 
5 occupant household, heating load reduction in average 
(41.2%) is still 4 times as effective as thermal insulation 
improvement. This finding strongly encourages the 
development of advanced residential HVAC system for 
future residential energy conservation.     
  
Table 4: Mean and Standard Error of the Mean Values of 
Annual Occupant Heat Gain and Appliance Load of 10 
Repetitions [MBTU]   

 
 

 “Mean” is the most commonly used statistical 
inference in application of any data. It give some sense of 
the “averaged behavior” of a population and with simple 
multiplication, the total amount of certain property of a 
population can be derived from it. According to central 
limit theorem, the 95% confidence interval (95.4 % to be 
precise) of the true mean of the population falls within 
the range of “Mean plus/minus 2 Stand Error of Mean” 
from the means of different batches of samples. A quick 
survey of table 4 reveals that, even only use the top 10 of 
the 30 data point generated in each virtual experiment 
repetition, the 95% confidence interval of true mean in 
both annual occupant heat gain and annual appliance 
load are within 5.5% range of the simulation mean. 
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Similar phenomena have been observed across all mean, 
17 percentile and 83 percentile of annual occupant heat 
gain, appliance load, heating load and cooling load in all 
cells of virtual experiment. The narrow range of values 
of these statically inferences provide strong support for 
the robustness of the integrative model’s behaviour.    
 

Finally, the behaviour of the human-physical 
integrative household energy model is compared against 
the energy use behaviour of real world residences. The 
agreement between the load profiles (Figure 11) 
generated from utility metering and those (Figure 12) 
from simulation warrants the merit of further 
development of the integrative household energy model. 
 

 
Figure 11: Daily Variation in Lighting and Appliance Plug 
Load Profile [Source: Figure 20 of reference 7] 
 

 
Figure 12: Averaged Lighting and Appliance Plug Load Profile 
by Integrative Model Simulation  
 
CONCLUSION 
The human-physical integrative household energy model 
provides a platform to simulate the effect of sub-house 
energy conservation measures. Virtual experiment 
showed that the use of bootstraps sampling approach on 
ATUS data to derive occupant’s stochastic energy 
consumption behaviour has resulted in a robust complex 
system model. Virtual experiment also pointed to the 

development of advanced multi-zone residential HVAC 
system as a suitable strategy for major residential energy 
efficiency improvement. Furthermore, the load profiles 
generated from integrative model simulation agree with 
those from field studies. It shows that the behaviour of 
the integrative model is a good representation of the 
energy consumption behaviour of real households. 
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